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Characteristics of a piecewise smooth area-preserving map
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We are reporting a study carried out in a system concatenated by two area-preserving maps. The system can
be viewed as a model of an electronic relaxation oscillator with over-voltage protection. We found that a
border-collision bifurcation may interrupt a period-doubling bifurcation cascade, and that some special fea-
tures, such as ‘‘quasicoexisting periodic orbits crossing border’’ as well as the transition between ‘‘quasitran-
sience’’ and chaotic orbits, accompany the process. These features belong to the so-called ‘‘quasidissipative’’
properties. Here ‘‘quasitransience’’ denotes the behavior of iterations outside elliptic islands. They are ‘‘at-
tracted’’ to the islands. As soon as it reaches the islands, the iteration follows the conservative regulations
exactly. This induces a kind of escaping from strange sets. The scaling behavior of the escaping rate is obtained
numerically.
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I. INTRODUCTION

Chaotic phenomena in nonintegrable systems have
tracted much attention since the 17th century. Howe
physicists have concentrated on everywhere-smooth sys
where the function and derivatives of mathematical mod
are everywhere continuous. Often ignored are the piecew
smooth mathematical models that can describe many pr
cal systems; such systems display certain kinds of cata
phes, crises, or extreme events. These systems may inc
relaxation and impact oscillators, dripping faucets, models
nerve cells or cardiopathy, and many others@1–11#. Their
dynamic behaviors are very different from those
everywhere-smooth systems. He and co-workers have s
ied some relaxation oscillators@5–10#. They extensively
studied an electronic relaxation oscillator and presente
detailed description of the system in Ref.@9#. The interesting
phenomena observed in the system included type V inter
tency @9,10#, a kind of crisis induced by piecewise smoo
characteristics@7#, a multiple Devil’s staircase@8#, and the
so-called ‘‘coexistence of attractors induced by mapp
holes’’ @5,6,9#.

Although most of the practical chaotic systems are dis
pative, the study on chaotic phenomena in conservative
tems is also important in theoretical studies. There are m
conservative mathematical models that describe prac
systems such as quantum systems, the solar system, a
on. Therefore, it is important to study piecewise smooth c
servative systems. To the authors’ knowledge, there are
a few publications relating to this topic@12–16#. Of these,
Hu et al. have reported a study on quantum chaos in a n
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KAM system exemplified by a particle in an infinite potenti
well subject to a periodic kicking force. They found a kind
diffusion in a stochastic web structure with special scal
properties@16#.

This paper discusses another characteristic behavio
piecewise smooth conservative systems. It is addressed
‘‘quasidissipative property.’’ Its main feature is that ellipt
islands attract iterations from outside. The phenomenon
some related behaviors accompany a process where a bo
collision bifurcation @17# interrupts a period-doubling cas
cade.

The article is arranged as follows. Section II introduc
the system; Sec. III discusses the quasidissipative proper
Sec. IV discusses the interruption of a period-doubling c
cade by a border-collision bifurcation. The last section co
tains a discussion and conclusion.

II. THE SYSTEM

A. The system and its mathematical model

The aforementioned electronic relaxation oscillator can
briefly described as follows: A capacitor in the circuit is r
peatedly charged and discharged, operated by two electr
control switches. The voltage across the capacitor,V, varies
exponentially between a sine-modulated upper threshold
a constant lower threshold. The upper threshold can be
pressed asU(t)5Umax2U0sin(vt) (Umax is a constant!, and
the lower one asW(t)5Umin ~constant!. At time tn , V de-
creases from an upper threshold valueVn5U(tn). It sud-
denly rises att* when reaching a lower threshold valueV*
5W(t* ). Then it suddenly drops again when reaching a
other upper threshold valueVn11 at timetn11. In this wayV
oscillates continuously. From the ordinary differential equ
tions describing the circuit@9#, one can deduce the Poinca`
mapping as~see the Appendix also!

r-
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xn112B21A2ln@C21U0~sin 2pxn11!#

5xn1A1ln@C1 /B11~U0 /B1!sin~2pxn!# ~mod 1!,

~1!

where xn (n is an integer! is the normalized phase of th
upper modulation signal corresponding totn , while
Ai ,Bi ,Ci ( i 51,2) are constants determined by the para
eters of the circuit. Their expressions can be found in
Appendix.

Most of the practical relaxation oscillators are more co
plicated. Often a two-dimensional map is necessary for
scribing them. In Ref.@18# one may find an example. In
order to simulate the cases we may reform map~1! by letting
one parameter, such as the lower threshold, become a
able. In some practical cases, ifV takes very large values in
a phase region, over-voltage protection has to be conside
These two changes will make map~1! a two-dimensional
piecewise smooth version.

A schematic drawing of the new circuit is shown in Fig.
~whereI 1@I 2), and the relaxation oscillation as well as bo
the thresholds are shown by Fig. 2. We suppose that for
capacitor, the charging currentI 1 takes an infinitely large
value, and the discharging currentI 2 remains constant. To
express the voltage protection we let the upper thresh
equal a constantE in the phase regionF whereV.E. We
feel it is more convenient to introduce a new parametec,

FIG. 1. A schematic drawing showing the circuit of the ele
tronic relaxation oscillator, which can be described by maps~6! and
~7!.

FIG. 2. A drawing showing the relaxation oscillation of the vo
age across the capacitor and both the upper and lower threshol
well as the over-voltage protection.
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which is defined asc5E/U0, to describe the phenomenon a
can be seen in Fig. 2. Now the form of the upper thresh
can be expressed as

H Un
up5Umax2U0 sin~2pxn!, xn¹F

Un
up5Umax1cU0 , xnPF,

~2!

whereF5(xF1
,xF2

)5@0.51arcsin(c)/2p,12arcsin(c)/2p# is
the phase region of over-voltage protection and the par
eter c satisfies the condition 0,c,1. As mentioned, the
lower threshold is modulated by the underlyingxn phase
according to a certain rule. We define another variableyn as

H yn115yn2
1

b
sin~2pxn!, xn¹F

yn115yn1
4p

bU0
xn , xnPF

~3!

and suppose that the lower threshold is a linear function o

Umin~yn!5Umax2aU02bynU0 . ~4!

The parameters satisfya.1 andb.0. Whenyn50, one has
Umin5Umax2aU0, and whenyn51, one hasUmin5Umax
2aU02bU0. From the geometry shown in Fig. 2 one ca
easily understand that the lower threshold should be confi
in the range (Umax2aU0 ,Umax2aU02bU0), andyn should
be confined in@0,1#. Also he can obtain

C@U~xn!2Umin~yn!#5I 2

2p~xn112xn!

v
, ~5!

whereC is the capacitance of the charged capacitor andv is
the frequency of the modulating signal of the upper thresh
as mentioned in Sec. II A. From Eqs.~2!–~5! and with the
conditionCv/I 251 as well asbU0/2p51, one can get the
following map describing the current system,

xn115 f 1x5xn1yn111
a

b
~mod 1!, ~6!

yn115 f 1y5yn2
sin 2pxn

b
~mod 1!

whenxn¹F,

xn115 f 2x5xn1yn1
a1c

b
~mod 1!, ~7!

yn115 f 2y5yn12xn ~mod 1!

whenxnPF. In the current study we takea52.0, b and/orc
are chosen as the control parameters.

B. Some properties of the system

1. Noninvertibility of the map

It is easy to verify that the absolute value of the determ
nant of the Jacobian matrix of maps~6! or ~7! equals a unit.

, as
2-2
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That means either Eqs.~6! or ~7! is a conservative mapping
The question is whether the nonsmooth concatenation ma
still conservative. This question shall be answered later. N
that there is no resistor in the circuit. It is supposed tha
such a case the current sources can work without suppl
expense of energy. This can be approximately realized in
experiment by using some modern devices.

The backward maps of Eqs.~6! and ~7! are

xn5 f 1x
215xn112yn112a/b,

~8!
yn5 f 1y

215yn111sin~2pxn!/b,

whenxn¹F,

xn5 f 2x
2152xn111yn111~a1c!/b,

~9!
yn5 f 2y

215yn1122xn ,

whenxnPF. It tells us that either map~6! or ~7! is invertible.
However, due to the fact that the condition of selecting
lutions in backward maps~8! and ~9! is determined byxn
instead ofxn11, one can still find two (xn ,yn) values for
each (xn11 ,yn11) according to either the functionf 1 or f 2.
That means the concatenation map is noninvertible. This
havior may be addressed as noninvertibility induced by
piecewise smooth property.

2. Some properties of the map without protection

If there is no voltage protection, map~7! does not appear
The remaining map~6! can be viewed as a kind of standa
map@19#. The main characteristics of it have been discus
already in many references. We shall only briefly discuss
fixed points, the period-2 orbits, and the critical parame
value where the system is going to be globally chaotic,
well as the period-doubling bifurcation of a fixed point.

The fixed-point equation of map~6! can be expressed a

1

b
sin~2px* !50,61,62, . . . ,

~10!

y* 52
a

b
,

whenxn¹F. As is well known, their stability can be dete
mined by

Tr~Ja6!522
2p

b
cos~2px* !, ~11!

where Ja6 is the Jacobian matrix of map~6! at the fixed
point. WhenuTr(Ja6)u,2, it is an elliptic point; it becomes
hyperbolic if uTr(Ja6)u.2. Therefore, taking sin(2px* )50,
one has a fixed point at (x1* ,y1* )5(0,2a/b). It is elliptic if
b.p/2. Also, another fixed point located at (x2* ,y2* )
5(0.5,2a/b). It is always hyperbolic.

There is another group of fixed points. When 0,b,1,
from sin(2px* )56b, one can get the following four fixed
points:
02620
is
te
n
or
n

-

e-
e

d
e
r
s

x* 5
arcsinb

2p
, 0.52

arcsinb

2p
, 0.51

arcsinb

2p
,

1.02
arcsinb

2p
; ~12!

y* 52
a

b
.

Similarly, one can find that two of them, (arcsinb/2p,
2a/b) and (12arcsinb/2p,2a/b), are elliptic when the
condition bP(p/A41p2,1) is satisfied. The other two
points at (0.52arcsinb/2p,2a/b) and (0.51arcsinb/2p,
2a/b) are always hyperbolic.

We can discuss a period-2 orbit in a similar way. The tw
periodic points (x1 ,y1) and (x2 ,y2) satisfy the following
equations:

x25x11y21
a

b
1m1 ,

~13!

y25y12
1

b
sin~2px1!,

x15x21y11
a

b
1m2 ,

~14!

y15y22
1

b
sin~2px2!,

where m1 ,m2 are integers. From the equations one kno
that there are two possible relationships betweenx1 andx2.
They are

x152x2

or

x150.52x2 .

We shall only discuss the first case here. In this simple c
the periodic points satisfy

4x15
1

b
sin~2px1!1m22m1 ,

x252x1 ,

y152x12
a

b
2m2 , ~15!

y2522x12
a

b
2m1 .

In the current study we shall only discuss the casem15m2
50. The stability condition of this orbit isuTr(Ja6+Ja6u
,2, i.e.,
2-3
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0,
2p

b
cos~2px1!,4. ~16!

So, the stable range of the orbit is 1,b,p/2.
Shenker and Kadanoff@20# studied the typical standar

map, which was expressed by

xn115xn1yn11 ~mod 1!, ~17!

yn115yn2
K

2p
sin~2pxn!~mod 1!.

They analytically proved that the last remaining KAM tor
that stretches fromx50 to x51.0 is going to be broken at
critical parameter valueK5Kc50.971 635 4. . . . The sys-
tem becomes globally chaotic when K.Kc
50.971 635 4. . . . Referring to their work and the functio
forms of map~6!, one can learn that in map~6! the last
remaining KAM torus is going to be broken atb5bc
56.466 84 . . . . Whenb,bc the system is globally chaotic

Now we can discuss the bifurcation of the fixed po
(x1* ,y1* )5(0,2a/b). From the above discussion one know
that it is stable whenb.p/251.570 . . . . It bifurcates atb
5p/2 and produces a period-2 orbit. This period-2 or
loses stability atb51. Whenb,1, the system produces
period-4 orbit as well as the two elliptic fixed points e
pressed by Eqs.~12!. This entire process happens beneath
thresholdbc , i.e., inside the globally chaotic region.

3. Some properties of the map with protection

Starting from an initial value near an elliptic point, th
iterations draw a commensurate or incommensurate cy
They are addressed as KAM cycles. According to famo
KAM theorem, there is the largest KAM cycle, which
incommensurate and separates the periodic or quasiper
motion inside it and the chaotic motion outside it. Usua
the part of phase space inside the largest KAM cycle is
dressed as an elliptic island.

Referring to Sec. II A we denote the two borderlines b
tween the definition ranges of maps~6! and ~7! by $(x,y)ux
5xF1

% and $(x,y)ux5xF2
%. When voltage protection is ap

plied they may hit some KAM cycles in an island and d
stroy them. Another new feature is the possibility of the a
pearance of ‘‘periodic orbits crossing border.’’ It is easy
realize that a periodic orbit of map~7! cannot show periodic
points only in its own definition range. The points shou
cross the border. Such an orbit may be expressed as

)
i 50

j

f 2
qi f 1

pi~D !5D, ~18!

wherepi ,qi ,i , and j are integers,D denotes a point in the
periodic orbit, andf 1 and f 2 are mapping functions listed in
Eqs.~6! and ~7!. The criterion of the stability of the orbit is
the same as mentioned before. In the current study
mainly discuss such orbits numerically due to the com
cated form of the mapping function. Some analytical cal
lation has been made with a simplified model@21#. The sys-
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tem with voltage protection can show other interesti
properties. Two of them will be discussed in the next tw
sections.

III. THE QUASIDISSIPATIVE PROPERTIES

There is a discontinuous set in the current system

G5øm51
n1 @ f j

2(m21)
„$~x,y!ux5xFi

%…# ~ i 51,2;j 51,2!,

~19!

which may play an important role. Heren1 is the periodic
number of the studied elliptic orbit,j 51 or 2 depending on
which definition range the point on the considered backw
image of the borderline~not the borderline itself! falls in. It
should be noted that the backward images are almost alw
double due to the aforementioned noninvertibility, and th
after the stretching and turning by a backward iteration,
points on following backward images of the borderlines w
usually fall in the definition ranges of both maps~6! and~7!.
It is easy to see that any KAM cycle that collides with setG
should dissolve. This set divides the phase plane into
gions, which may be addressed as ‘‘KAM regions.’’ Th
KAM theorem now is correct only inside each KAM region
The iterations across KAM regions may not obey KA
theorem. For example, iterations from some initial poin
outside an elliptic island may cross some borders of KA
regions and go into the island~as will be shown below!.

A. The quasidissipative properties

Now we discuss the case when the parameters are ch
as a52.0, b50.933 564,1, cP@0.7,0.9#. As mentioned
@below Eq.~12!#, if there is no voltage protection, two stab
elliptic points are located ate1* 5(0.191 659,0.857 671) and
e2* 5(0.808 341,0.857 671). There should be a period-4
liptic orbit produced by the period-doubling bifurcation o
the ordinary elliptic point (x1* ,y1* ). The corresponding
period-1 hyperbolic points are located ath1*
5(0.0,0.857 671), h2* 5(0.5,0.857 671), h3*
5(0.308 341,0.857 671), andh4* 5(0.691 659,0.857 671).

In the current system~with protection! we address the
elliptic island around the elliptic pointe1* as e1 and the
island around the pointe2* ase2. At the parameter valuec
5c050.933 564,e2* collides with$(x,y)ux5xF2

%, the right

boundary of regionF. When c decreases further,e2* falls
into the protection region and vanishes. In the next sec
we shall show that the period-4 orbit also disappeared v
collision with a borderline. Only elliptic islande1 remains.
Whenc50.89, we choose 5003500 initial values evenly in
the rangexP@0,1# and yP@0,1# and compute iterations o
maps~6! and ~7!. The iterations do not obey KAM theorem
since they are trapped intoe1 island as shown in Fig. 3
However, as soon as they enter the island, they perform
typical conservative behavior. Let us explain this behavio

The noted noninvertibility induced by the piecewis
smooth property produces double images for each pointD in
e1 island as shown in Fig. 4. One of the backward imag
f 1

21(D), is inside the island. Another one,f 2
21(D), is outside
2-4
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the island and located inside the protection region. The
backward image leads to the iterations following conser
tion laws. The second backward image leads to beha
simulating transience in dissipative systems, since they c
a border of KAM regions. Therefore, the island may
called a quasi-attractor. The iterations outside the island m
be addressed as quasitransience~QT!. The set of the initial
values, from which iterations tend to quasiattractors, may
called a quasibasin. This kind of dynamic behavior may
addressed as quasidissipativity. It seems that the conca
tion map is neither dissipative nor conservative. It simula
a dissipative one out of some regions~the elliptic islands!,
but simulates a conservative one inside these regions.
phenomenon may be interesting and important in so
cases, as will be discussed in the last section.

B. The quasigaps inside the quasitransient iterations

Figure 5 shows the QT recording from 5003500 initial

FIG. 3. The crosses show the chosen initial values. The
10 000 iterations from these initial values were ignored to avoid
quasitransience, and the following 1000 iterations were recorde
obtain the dotted lines, which show elliptic islande1. The parameter
values were chosen asa52.0, b50.933 564, andc50.89.

FIG. 4. For the computation, 5003500 initial values were cho-
sen evenly on the phase plane. The small triangles show the in
values for which the iteration spent 2500 steps or more to reace1

island. The parameter values were chosen asc50.89, a52.0, and
b50.933 564. The two vertical linear lines denote the borderlin
$(x,y)ux5xF1

% and $(x,y)ux5xF2
% , of the voltage protection re

gion F.
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points evenly chosen on the phase plane whenc50.89. One
may note the strange pattern there formed by white regio
The pattern should indicate the regions where the visit
iterations is almost prohibited. We may denote the regions
‘‘quasigaps.’’ The largest quasigap is the white band in
cated byJ in the figure. It becomes a gap because its ba
ward images do not exit as shown by Fig. 6. As can be se
f 1

21(J) falls in the definition region off 2, while f 2
21(J) falls

in the definition region off 1. We found that the other white
regions are mainly occupied by the first forward image oJ
as shown by the black regions in Fig. 7. These regions
well consistent with the curly quasigap regions shown in F
5. Thus it is easy to understand that the visit to the regio
almost prohibited. There may be some very small ‘‘whit
regions occupied by further forward images ofJ but, obvi-
ously, they can be visited with more and more possibilitie

C. Escaping from a strange set induced by quasidissipative
property

Here, we show that all the chaotic orbits in the chaotic s
outsidee1 island become QT. This can be viewed as a ki

st
e
to

ial

,

FIG. 5. The figure was drawn by recording 10 000 iteratio
from evenly chosen 5003500 initial values. The parameter value
were chosen asc50.89, a52.0, andb50.933 564. The white re-
gion indicated byJ was explained in the text.

FIG. 6. The dotted regions show the backward images of
quasigap regionJ as indicated by the solid oblique lines. The tw
vertical solid lines indicate the borderlines,$(x,y)ux5xF1

% and
$(x,y)ux5xF2

%, of protection regionF. The parameter values ar
c50.89, a52.0, andb50.933 564.
2-5
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of escaping from a strange set via a leaking hole@22#. The
hole H can be defined as follows.

Let us denote the intersection off 2
21(e1) andF, the set of

points inside the protection region~see Fig. 4!, by I and the
set of the quasigapJ and its first forward image byG. The
hole is then defined as the difference set between setI and
the intersection ofI andG, i.e.,

H5I \~ I ùG!,

I 5Fù f 2
21~e1!,

F5$~x,y!uxF1,x,xF2%, ~20!

G5Jø~ f j~J!!,

where j equals 1 or 2 depending on which definition ran
the point ofJ falls in. Figure 8 shows a magnification of th
part of phase space around the leaking hole whenc50.89.
According to the definition ofH, only the first image ofJ is
shown in the figure.

FIG. 7. The figure was computed with the parameter valuec
50.89, a52.0, andb50.933 564. The black regions show the fir
forward image of the quasigap regionJ. J is indicated by solid
oblique lines.

FIG. 8. A magnification of the part of phase space around
leaking hole. The black region shows the setI, the intersection
betweenf 2

21(e1), andF. The dotted regions show setG, the set of
quasigapJ, and its first image. The leaking holeH was defined as
H5I \(I ùG). The parameter values were chosen asc50.89,
a52.0, andb50.933 564.
02620
In order to give a quantitative description of the escapi
we define the mean transient time^N& for the ensemble of
initial points as follows:

^N&5 lim
n→`

(
i 51

n

Ni

n
, ~21!

wheren is the number of initial points of the ensemble a
Ni is the length of QT from each initial point. The validity o
the definition should rely on the fact that^N& tends to a
constant whenn→`. To prove this in the underlying system
a numerical investigation has been made. The results ce
that the definition is valid when setI, the intersection be-
tween f 2

21(e1) andF, is not an empty set. Our computatio
also shows that the leaking hole size decreases and^N& in-
creases asc is getting smaller obeying a power laŵN&21

}(c2ck)
n. This is also in agreement with the conclusio

reported in Ref. @22#. The critical value ck50.741 90
60.000 02 indicates the vanishing point of setI. It is also the
vanishing point of the leaking holeH. The good scaling be-
havior shown in Fig. 9 convinced us of the scaling prope
and the exponentn51.35360.025.

IV. PERIOD-DOUBLING BIFURCATION

For an investigation on period-doubling bifurcation, w
choose the parameter valuesa52.0 andc50.933 564. Pa-
rameterb serves as the driving parameter. In this situati
the voltage protection regionF becomes a fixed one, i.e.,F
5(xF1

,xF2
)5(0.691 659 371 92,0.808 340 628 07).

As discussed in Sec. II, if there is no voltage protectio
fixed point (x1* ,y1* )5(0,2a/b) is stable whenb.p/2. It
period doubles first atb5p/2.1.570. The period-2 orbit
loses stability atb51. Whenb,1, the system produces
period-4 orbit as well as the four fixed points expressed
Eq. ~12!. This entire process happens below the thresh
bc , i.e., inside the globally chaotic region. The perio
doubling bifurcation cascade will become complete. Ho
ever the situation becomes very different in the underly
system as will be discussed in this section.

Figure 10~a! shows the phase plane after the first perio
doubling bifurcation whenb5p/2.1.1.495 996 5. The
original elliptic point, (x1* ,y1* ), now becomes hyperbolic a

e

FIG. 9. Scaling behavior of mean transient time^N&. The
squares denote the computed data. The linear line was obtaine
the least square fitting. The parameter values were chose
ck50.7419,a52.0, andb50.933 564.
2-6



at
o

T,
e

-6

s-

e

in
st

nd

d in
ain.
an
is

e
s
ter
ole
ion

nd
g

en
olv-
r.
tec-
by
ion
ic
en

s
nor-
3
e
me

art
i-

ur-

bi-

era
tte
re

ta

ues

l
ic

re-

CHARACTERISTICS OF A PIECEWISE SMOOTH . . . PHYSICAL REVIEW E64 026202
~0.0,0.6631!. The new period-2 elliptic points are located
(0.085 690 9,0.834 48) and (0.914 309,0.491 717). All the
bits inside the chaotic sea around their islands become Q
discussed before. The ‘‘periodic orbit crossing border’’ is d
noted by three squares in the figure. Figure 10~b! shows the
magnification of the square inside regionF, the over-voltage
protection region. It tells us that the new orbit is a period
orbit and can be expressed as

f 2f 1l f 1r f 2f 1l f 1r~D !5D, ~22!

where D denotes any point inside the period-6 elliptic i
lands, andf 1l or f 1r denotes the mapping function~6! in its
left or right half of the definition region, respectively. Th
criterion for the stability of the orbit isuTr(Ja),2u where
Ja5Ja7+Ja6+Ja6+Ja7+Ja6+Ja6. This orbit is ‘‘quasicoexist-
ing’’ with the period-2 orbit. Each of them has its quasibas
Our numerical results show that this period-6 orbit exi
only in a very small rangebP(p/2.121023,p/2.111022).

Whenb becomes even smaller, the period-2 elliptic isla
moves toward borderline$(x,y)ux5xF2

%. At b.1.37 it be-

FIG. 10. ~a! The phase plane after the first period-doubling
furcation. The parameter values were selected asb5p/2.1,
a52.0, andc50.933 564. 20320 evenly distributed initial values
were chosen. The first 43105 iterations from the initial values were
ignored to avoid the quasitransience. Then the following 1000 it
tions were recorded to obtain the elliptic islands as shown by do
lines. A period-6 orbit that crosses the border is denoted by th
dashed squares. The two solid vertical lines show the over-vol
protection regionF. ~b! A magnification of the part in~a! occupied
by the dashed square inside regionF.
02620
r-
as
-

.
s

comes a tangent to the borderline. Whenb.1.324, the es-
caping hole vanishes via a similar mechanism as discusse
the last section so that the QTs become chaotic orbits ag
We can determine the similar scaling behavior for the me
transient time as in the last section. The obtained rule
^N&21}(b2bk)

n. Here the critical valuebk51.3245 and the
scaling exponent isn.1.39.

One of the period-2 elliptic points collides with th
$(x,y)ux5xF2

% borderline atb.1.217 74 and then vanishe
together with the elliptic island. Therefore in the parame
range bP(1.0,1.217 74) a chaotic sea occupies the wh
phase plane. It may be interesting that in parameter reg
1.217 74,b,1.324 there is an almost forbidden region a
a region with high visiting probability around the remainin
elliptic island, as shown in Fig. 11. The almost forbidd
region is apparently due to both the quasigap and the diss
ing of some KAM cycles via the collision with the borde
The iterations along these cycles will soon reach the pro
tion region and then move along the chaotic orbits shown
dotted patterns. We have numerically certified that the reg
of high visiting probability situates along the homoclin
stable and unstable manifolds of a hyperbolic orbit. Wh
b,1, the new elliptic point addressed bye2 in the last sec-
tion and one of the period-4 elliptic points fall in regionF, so
that e1 remains the only elliptic point.

The whole bifurcation diagram is shown in Fig. 12. A
can be seen the period-doubling bifurcation cascade is
mal before line 2, that is, atb.1.37. Between lines 2 and
more and more KAM cycles vanish via collisions with th
border and become parts of the QT. All the QTs beco
stable chaotic orbits at line 3~at b.1.324) due to the van-
ishing of the leaking hole, but there is still a remaining p
of the period-2 elliptic island. The main period-doubling b
furcation cascade is interrupted by a border-collision bif

-
d
e

ge

FIG. 11. The figure was computed with the parameter val
b51.3, a52.0, and c50.933 564. 10340 initial values were
evenly chosen inside regionF, which was indicated by two vertica
solid lines. The following initial values inside the remaining ellipt
islands were also taken: (x,y)5(0.816 211 53,0.125 46),
~0.821 527 4,0.126 102 6!, ~0.8222,0.126 102 6!,
~0.825,0.126 102 6!, ~0.827,0.126 102 6!, ~0.831,0.126 102 6!,
~0.838,0.126 102 6!. The first 43105 iterations from the initial val-
ues were ignored, and then the following 1000 iterations were
corded to obtain the figure.
2-7
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cation at line 4~located inb.1.217 74), so that the system
enters a complete chaotic sea. After line 5, a new ellip
point e1 appears. It should be noted that the parameter ra
of the coexisting period-6 orbit crossing the border is t
small to be shown in this bifurcation diagram.

V. DISCUSSION

We have discovered some ‘‘quasidissipative properti
in a system that is a concatenation of two area-preser
maps. These properties make the system behave partly d
pative and partly conservative. What is the physical or pr
tical meaning of this discovery? In this circuit system
means that with the jumping changes induced by overvolt
protection some chaotic motion transfers to regular~periodic
or quasiperiodic! motion, and that some regular motion ca
be changed to chaotic, as the special period-doubling b
cation shows. Also, some phase regions may become pro
ited or protected for iterations. These conclusions may
trivial.

However, we argue that in some types of concatena
systems this discovery may have much more interesting
plications. For example, if some quantum systems can s
the quasidissipative properties, their natures will be very
teresting to research.

FIG. 12. The bifurcation diagram. Line 1 is atb5p/2. Line 2 is
at b51.37. Line 3 is atb51.324. Line 4 is atb51.217 74. Line 5
is atb51. CurveP1 denotes the fixed point (0.0,2a/b). CurveP2

denotes the period-2 orbit produced after its first period-doub
bifurcation. Curve Pn1

denotes the elliptic point e1 at
(arcsinb/2p,2a/b). Other things are explained in the text.
.
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APPENDIX

As stated in Ref.@9#, the differential equations describin
variation ofV are

dVu

dt
5

E2Vu

R1C
, ~A1!

dVd

dt
5

RE2R1Vd

R1RC
,

whereR1 or R2 is charging or discharging resistance, resp
tively. E is the output voltage of a dc source.R satisfies
1/R51/R111/R2. After integrating the falling branch from
tn to t* , and the rising branch fromt* to tn11 in equation
~A1!, one has

RC ln
RE2R1Vn

RE2R1V*
5t* 2tn , ~A2!

R1C ln
E2Vn11

E2V*
5t* 2tn11 .

Let V* 5Umin ,x5vt, and notice that Vn115Umax
2U0sin(vtn11) andVn5Umax2U0sin(vtn), one has

xn111R1Cv ln
E2Umax1U0sinxn11

E2Umin

5xn1RCv ln
RE2R1Umax1R1U0sinxn

RE2R1Umin
. ~A3!

In Eq. ~A3! let A15vRC/2p, B15(R/R1)E2Umin , C1
5(R/R1)E2Umax, A25vR1C/2p, B25(vR1C/2p)ln(E
2Umin), C25E2Umax; mapping~1! can be obtained.
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